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Monte Carlo simulation technique

Process
description

f(x1)

x1

Monte
Carlo

Weighting of results by calibration data



4

Monte Carlo simulation scheme
for basin modelling
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Secondary migration simulation procedure

Interpolate lithologies at 1 m vertical resolution from 
well-logs.
For fault segment:

SGR(x,y)=f( throw(x,y) , lithology(x,y) )

For every time-step and fault segment:
Pe(x,y)=f(SGR, burial_depth, faulted_depth)
Column_seal=f( Pe(x,y), density, hc_phase)
Use column_seal in flow-calculations.
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Interpolation of lithologies onto fault
planes from well-logs
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Secondary migration simulation Procedure

Interpolate lithologies at 1 m vertical resolution from 18 
well-logs.
For fault segment:

SGR(x,y)=f( throw(x,y) , lithology(x,y) )

For every time-step and fault segment:
Pe(x,y)=f(SGR, burial_depth, faulted_depth)
Column_seal=f( Pe(x,y), density, hc_phase)
Use column_seal in flow-calculations.
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Sperrevik et al, 2002: 
Pe=f(SGR,burial_depth,faulted_depth)
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Secondary migration simulation Procedure

Interpolate lithologies at 1 m vertical resolution from 18 
well-logs.
For fault segment:

SGR(x,y)=f( throw(x,y) , lithology(x,y) )

For every time-step and fault segment:
Pe(x,y)=f(SGR, burial_depth, faulted_depth)
Column_seal=f( Pe(x,y), density, hc_phase)
Use column_seal in flow-calculations.
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Clay-smear Monte Carlo in Tune:

Variables:
4 clay-smear variables
1 clay-smear up-scaling variable
4 expulsion variables
Gas leakage rate

Uniform distributions
3200 simulation runs
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Monte Carlo input distributions:
<infami-depth='500.  {STAT 1000 UNIFORM:1000}‘

<infami-missing='0.0   {STAT 500 UNIFORM:500}‘    &   0
<infami-maxsgr='0.5   {STAT 0.5 UNIFORM:0.2}'

<infami-diagenesis='9000. {STAT 6000 UNIFORM:2000}‘
<pe-scale=’5.5 {STAT 6 UNIFORM 5}

<leak-gasrate='0.02  {STAT 0.05 UNIFORM:0.049}'
<expgas='1.00  {STAT 0.7 UNIFORM:0.3}' 

<expgas2='1.00  {STAT 0.7 UNIFORM:0.3}' 
<expgas3='1.00  {STAT 0.7 UNIFORM:0.3}' 
<expgas4='1.00  {STAT 0.7 UNIFORM:0.3}' 

0 10.7
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Tune Field study area
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Tune Monte Carlo
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Pressures from Lothe et al. (*)

*: poster presented at the AAPG international conference in Paris, 2005.
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Most likely oil columns modelled
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Tune Monte Carlo uncertainties

Oil column standard deviation (m)
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Weights (normalized) distribution
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Variable distribution for best 100 runs
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Maxsgr distribution for best 100 runs
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Diagenesis distribution for best 100 runs
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Infami-depth distribution for best 100 runs
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Missing distribution for best 100 runs
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Pe-scale distribution

Normalized weights
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Pe-scale distribution: good cases

Normalized weights
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Correlation between variables:

The 20 best cases

y = 9.5268x + 2.185
R2 = 0.2521
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Clustering between variables:

The best cases
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(No) correlation between variables:

The best cases

y = 0.019x + 0.7179
R2 = 0.0003
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Pe-scale versus normalised weights:

100 best runs
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Pe-scale versus infami-depth:

20 best runs

y = -0.0101x + 23.408
R2 = 0.9023
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Discussion:
Actual versus Modelled:

The ”modelled” world:The ”real world” (measured)

Childs et al., 2004
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Conclusions

Pe-scale variable is essential for good fit
Pe-scale={2.5-6} & pe-scale=10.43564

Pe-scale correlates with depth of faulting
for low-misfit simulation runs.

Best simulation runs obtained for
infami-missing=0

Promising technique, need more cases 
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A Probabilistic Approach to Clay-Smear Fault Seal in Hydrocarbon 
Migration Modeling for the Tune Field

Øyvind Sylta, SINTEF Petroleum Research, Trondheim, N-7465, Norway, phone: +47 73 59 12 56, fax: +47 73 59 11 11, oyvind.sylta@iku.sintef.no and 
Susanne Sperrevik, Norsk Hydro, Sandsliveien 90, Bergen, 5020, Norway. 
A simulation of hydrocarbon generation and migration into the Jurassic gas-condensate Tune Field south-west of Oseberg has been conducted using a 
Monte Carlo simulation approach. Tune contains a “proven” fault seal. A model for the entry pressure versus shale-gouge-ratio was implemented in a 
hydrocarbon migration simulator to account for clay-smear fault sealing. This model accounts for depth of faulting and changes in burial depths through time. 
The clay-smear model is based upon laboratory measurements of entry pressures and permeabilities from cored faults in well bores. 
A reasonable match to the hydrocarbon migration pattern in the area was achieved through a manual calibration of the hydrocarbon migration model. It was 
not possible to completely match the drilled oil and gas columns in Tune. Two new parameters were therefore introduced into the model: a “maximum 
diagenesis depth” and an up-scaling factor from the laboratory data to field scale fault seals. 
A Monte Carlo simulation approach was adapted by specifying important input parameters (not only fault seal parameters) as probability distributions.. A 
very good match to the Tune wells was provided by the best of the 3000 runs that were completed. The best data fit resulted in an order of magnitude 
greater entry pressures than modelled by the published formula. There are also quite good simulation runs for scaling factors close to 1, but not for lower 
values. The study shows that the Monte Carlo approach can be used to bracket fault seal parameter ranges, and thereby reduce uncertainties in fault seal 
models. 
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